Simplify each expression.

1. $(3+\sqrt{7})(3-\sqrt{7})$
2. $(5+\sqrt{2})(5-\sqrt{2})$
3. $(\sqrt{7}+1)^{2}$
4. $(\sqrt{5}+2)^{2}$
5. $(1+\sqrt{2})(3+\sqrt{2})$
6. $(6-\sqrt{3})(4+\sqrt{3})$
7. $\frac{1}{4-\sqrt{3}}$
8. $\frac{1}{6+\sqrt{3}}$
9. $(\sqrt{7}-\sqrt{2})^{2}$
10. $(3 \sqrt{11}-\sqrt{10})^{2}$
11. $(3+4 \sqrt{3})(2-\sqrt{3})$
12. $(5-\sqrt{2})(3-2 \sqrt{2})$
13. $\frac{3}{\sqrt{5}+\sqrt{2}}$
14. $(\sqrt{11}-\sqrt{7})(\sqrt{11}+\sqrt{7})$
15. $(5+\sqrt{3})(8-2 \sqrt{3})$
16. $\frac{\sqrt{15}}{\sqrt{3}+\sqrt{5}}$
17. $(2 \sqrt{5}+\sqrt{7})^{2}$
18. $(2 \sqrt{3}+\sqrt{5})(2 \sqrt{3}-\sqrt{5})$
19. $(\sqrt{6}-\sqrt{15})^{2}$
20. $\frac{\sqrt{5}+\sqrt{3}}{2} \cdot \frac{\sqrt{5}-\sqrt{3}}{2}$
21. $(5 \sqrt{6}+3 \sqrt{2})(2 \sqrt{6}-4 \sqrt{3})$
22. $\frac{\sqrt{5}+1}{\sqrt{5}-3}$
23. $\frac{10}{2 \sqrt{3}-\sqrt{7}}$
24. $(\sqrt{13}-\sqrt{3})(\sqrt{13}+\sqrt{3})$
25. $(3+2 \sqrt{6})(4-5 \sqrt{6})$
26. $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}$
27. $(3 \sqrt{2}+\sqrt{6})^{2}$
28. $(3 \sqrt{7}-2 \sqrt{5})(3 \sqrt{7}+2 \sqrt{5})$
29. $(2 \sqrt{5}-\sqrt{10})^{2}$
30. $\frac{2 \sqrt{7}+1}{3} \cdot \frac{2 \sqrt{7}-1}{3}$
31. $(3 \sqrt{5}+2 \sqrt{15})(4 \sqrt{3}-3 \sqrt{15})$
32. a. What is the conjugate of $2 \sqrt{5}-3 \sqrt{2}$?
b. What is the reciprocal of the conjugate of $2 \sqrt{5}-3 \sqrt{2}$?
c. What is the conjugate of the reciprocal of $2 \sqrt{5}-3 \sqrt{2}$?
33. Show that the reciprocal of $\frac{\sqrt{5}+1}{2}$ is also the conjugate of $\frac{\sqrt{5}+1}{2}$.

Use the Pythagorean theorem to find \boldsymbol{x}.

39.

40.

Simplify. Assume that each radical represents a real number.
41. $(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})$
43. $\frac{\sqrt{w}}{\sqrt{w}+1}+\frac{\sqrt{w}}{\sqrt{w}-1}$
42. $(b+\sqrt{b})^{2}-(b-\sqrt{b})^{2}$
44. $\sqrt{1-y^{2}}+\frac{y^{2}}{\sqrt{1-y^{2}}}$

